
Submitted to Physica D 

NON-LINEAR DIFFUSION IN HAMILTONIAN SYSTEMS 
EXHIBITING CHAOTIC MOTION 

Henry 0. I. Abarbanel 

April 1980 

TWO~ WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 
Tech. Info. ioision, Ext. 6782 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 

LBL-1051 • 
Preprint 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain conect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wananty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or Regents of the 
University of California. 



Physica D 

Non-Linear Diffusion in Hamiltonian Systems 
Exhibiting Chaotic Motion* 

Henry D I. Abarbanel 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

Ab ract 

The exact evolution equation for the angle averag phase space 

density -in action-angle space is der-ived from the Liouville equation 

using projection operator techniques. This equation involves a correla-

tion function of the initial value of the phase space density with the 

angle dependent part of the Ham-iltonian and a correlation function of 

the angle dependent part of the Hamiltonian and a correlation function 

of the angle dependent part of the Hamiltonian with itself. Each of 

these correlation functions develops in time with angle projected dyna-

mics. \~e sho~tl their relation to the correlation functions v1hich develop 

in time with usual Hamiltonian dynamics. These correlation functions 

are then studied in the standard model of Chirikov, and we conclude that 

-d ( ) ) they behave as e · cos nt+~ in regions of irregular motion. 

conjecture that angle avPraged correlation functions behave this ltJay in 

general, and we give an argument based on the mixing property the 

Hamiltonian system. Our argument goes beyond the usual mixing, so we 

regard it as a quasi-mixing hypothesis. Under this hypothesis the 

equation for the angle averaged phase space density becomes a diffusion 

equation which incorporates much of the non-linear dynamics of Hamilton-

ian systems exhibiting chaotic motion. 

*\~ark-supported by the U. S. Department of Energy, Office of Fusion 
Energy, under contract W-7405 NG-48. 



Mechanical ~ystems of even a few particles are known to show regions 

f 1 . t d . 1 t. 192 D d. . d t 'l o comp 1ca.e or 1n·egu ar mo·wn. epen 1ng 1n C' ·in on the 

strength the non-integrable perturbation. these regions may be quite 

small or may occupy the whole of the allowed phase space. A very 

attractive physical picture of the onset of choatic motion has been 

developed over the years by Chirikov. 1 He argues that the regularity 

of motion is most clearly seen in the existence adiabatic action 

invariants, and that the overlap of resonances in the non-linear 

interaction of these invariants causes the system to wander about in 
? 

phase space from one resonant region to others.~ Once this resonance 

overlap sets in. the values of the adiabatic invariants diffuse away 

from any given region of phase space and we expect the distribution 

function F(I,t) for the invariants I = (I 1,I 2, .•• IN) to satisfy 

some sort of diffusion equation of the form 

F(I,t) ( 1 ) 

In the quasi-linear approximation diffusion equation such as this 
4 . has been considered by Kaufman for part1cle motion in an axisymmetric 

plasma, by Rosenbluth, et at5 for the diffusion of magnetic field 

lines and surely by many others. 

In this paper we will employ the projection operator method of 
,. 

Zwanzig 0 to investigate the validity and properties of diffusion 

equations such as (1). Beginning with the Liouville equation for the 



phase space density function. we project out those vari les not of 

interest--typically the ones varying rapidly. We arrive at an equation 

much of the form of (1) v.1ith an additional term l"epresenting a 

correlation of information about the system at t = 0 with information at 

the later time, t, of interest. On the basis of some model numerical 

calculations and on the idea of mixing vte argue that such correlation 

-at functions behave as e cos 0.t vvhen the system motion is chaotic. So 

that to exponential accuracy Equation (l) \'llill hold. Our argument at 

this stage is a refinement of some observations by Sagdeev and 

Zaslavskii. 7 

The diffusion tensor 

form of dynamics, not by 

+ 
D., (I) v1hi ch appears 

JK 
the full dynamics of 

is CJiven by a projected 

the problem. We derive a 

relation between the full diffusion tensor and the projected diffusion 

tensor for Hamiltonian systems characterized by action-angle variables. 

~ 3 -



Since we wish to describe the departure of adiabatic invariants from 

constancy, we will work with a time independent Hamiltonian ~ystem with 

Hamiltonian given in terms of r·~ actions I., j = l,.,,N, and N ang.les 
J 

e., j = l, ... ,N 
J 

( 2) 

The H term alone would result in I. =constant, and it is the H, 
0 J 1 

term which is responsible for chaotic motion and diffusion of the 

actions. H1 is not assumed to be small. 
+++ 

The Liouville equation for the phase space density f(I,e,t) takes 

the ti-10 forms 

N a 1 (a a · ) ~f + [., ·- ( e . n + -( r . f) "" o. at . 1 ae. J a I. J 
J= J J 

( 3) 

and a 
~f - Lf, 
at 

( 4) 

where the Liouville operator Lis, as usual, 

iiJ 
L =I (aH._a~- H _a~). 

-:_ 1 ~'ll . ae . ae . a I . 
J- J J J J 

( 5) 

We want to discuss the evolution of the angle averaged phase space 

density 



+ 

J 
N -+ + 

F(I,t) d B f(I,e,t) (f)) --

(2rr) 

- Pf (7) 

which defines the projection operator P. Since P is time independent, 

from the Liouville equation we have 

- PLF -- PLG (8) 

v<here 

+ ·+ + + 
G(I,e,t)::.: (1-P)f{I,e,t) ( 9) 

+ + 
The function G is made of all the terms of f(I,e,t) with non-trivial 

angle dependence. Similarly by multiplication of (4) by (l-P) v.1e arrive 

at 

(1-P)LG ( ] 0) 

+ 
Since F depends on the I's alone, (repeated indices are summed over 

tl0\11) 

( 1 l ) 

and 

~ 5 ~ 



~ ( J d aH1 ) <l . 
PLF ~ ~ (2n) aea ala F ~ 0, 

since H1(!,;) is periodic in~. 

We have no1t1 

4(1 tl at ' 
·+ + 

~ PLG(I,e,t) 

and 

aG at = - LF -· ( 1-P )LG 

This last equation has the solution 

G(t) = e-( 1-P)LtG(O) - Jt dz e-(l-P)Lz LF(t-z) 
() 

which leads to 

a + atF (I, t) =- PLe-(1-P)LtG(l,; ;0) 

+ Jt d PL e-(l-P)LT LF(T,t-T). 
0 

(12) 

( 13) 

(14) 

(15) 

(16) 

Consider the first term of this equation. Using the properties of L 

expressed in (3) we find 



d 

d j 
(17) 

Next we look at the second term. Using (3) and (5) we cast this into 

the form 

with 

d j 

~ 

I
t ~ a ~ 

0 . k ( I , t )-1-- F ( I, t~T ) dT 
0 J d ! 

;( 

O.k(I,T) J. 

~ 

Note that Djk(I,T) is an operator of multiplication hy I and 

derivatives with respect to I. We have separated out Djk in this 

(18) 

( 19) 

fashion since the projection operator has no effect on the function of 
~ 

alone upon which Djk(I,T) acts. 

So altogether we arrive at 

F(I,t) 

( 20) 

d It ~ 3 ~ + ~ D 'I (I, T )-I- F (I. t-·L) c]T. 
aij 0 J< a k 



The diffusion tensor I arises from the 1Jrcj2cted Liouville O!Jerator 
,( 

(1-P)L and so its dynamics are a bit unfamiliar. We shall call D the 

role in the evolution of initial action-angle var·iahles I .,e. into 
J J 

~ -+·+ ~ ++ 
I.(I,e,t) and e.(I,e,t) via 
J J 

" 

c1 I . crf = (1-P )LI 
I"" I 
e"'e 

and 

d - (l~·P)Lel " 
aH1 + ·+ I 

~j "" :::; (I,e,t)l " 
hd a j !:::I 

" e:=e e""e 

The mot·ion of and e differs from the usua 1 motion r:J Uf~ to L in 

the term due to H - the regular motion - is absent from the ~ time 
0 

( 21 ) 

(22) 

that 

development. So the projected motion is missing the regular, integrahle 

piece most familiar to us and may be expected to take an even more 

irregular form than the usual motion. the projected motion is a kind of 

"general·izecl interaction representation~~ since the influence of H is 
0 

absent. 

Under the influence of the usual dynamics we would encounter the 

direct diffusion tensor 

(23) 



This is also a correlation function between aH 1/aek and aH 1/aej 

separated by a time L If the system is chaotic or irregular, v1e would 

expect information at t = 0 to be rapidly forgotten by the system on a 

time scale similar to the time it takes for nearby orbits in phase space 

to separate exponentially. The direct diffusion tensor may fall very 

rapidly in t in chaotic motion; its behavior is easily amenable to 

numerical investigation. 

Now we will find the relation between Djk and ajk" 

the Laplace transforms 

and 

co 
+ 

fo 
t -)-

a .k(I, s) dt -s r ) 
J / e Lljk'I,t. 

\tJe have 

+ ('Hl 1 aH1) Djk(I,s) = P~ s+n=PJL 38. ae 1 ' 
J ,( 

and 

"' P(~~ + aH1) . 
ae . s L !lek J / . 

- 9 -

Introduce 

( 2fl) 

(25) 

(2Fi) 

( 2 7) 



Using the operator identity 

we find 

In the second term we use 

PLW(I,e) (
a a • ) 

""P ae.(e.W) + ar:-(I .W) 
J J J J 

for any W periodic in e.'s, and find 
J 

= r::,J.k(I,s) - p(aHl. ~-1- ~a -P .~ ··~ .:~) 
ae. s+L ai ae s+p-P;L aek 

J n n 

or 

·- 10 -

(28) 

(30) 

(31) 

( 32) 

(33) 



Note that 

and r(()Hl l) = o. 
ae. s 

J 

1 
s 

Si nee 

LD(I,s) 

we arrive at the operator equation 

or so I . a) 

( 31+) 

(35) 

(36) 

( 37) 

This result relates the direct diffusion tensor, about which we might 

chance some guesses or make some approximations; e.g. the quasi-linear 
11 

approximation;T to the projected diffusion tensor which we need for 
-+ 

the evolution of the projected phase space density F(I,t) in Equation 

( 20) • 

From (37) we infer that for s -+ oo, Dab -+ ~'~ab" ~1ore directly we 

find from (26) and (27) that 

- 11 -



-+ 

D 1 (I,s) aJ s~oo 

1 ( 3 8) 
s 

This result is understood physically by remembering that the Laplace 

transform variables~ oo corresponds tot~ 0 in rea·l time. For very 

short times projected and direct dynamics should correspond. Indeed, 

(3.S) shows they difft:r by O(t2). 

This suggests we introduce yet another diffusion tensor 

which we call the anomalous di ion tensor. It satisfies 
-~·_;;_.._-

(40) 

To make any progress in learning about D or n v1e need some ideas 

about 6; we turn now to that. 



I I L The Di nsor 

We begin our study of the direct diffusion tensor by considering the 

one dimension system 

H(I,e) H(I)+Vsine 
0 ' 

( ~ l) 

Such systems are always integrable and, thus, regular so they will show 

no diffusion of actions. However, it does provide an example of what 

not to expect for chaotic systems. It is straightforv4arcl to integrate 

the equations of motion for e(t) from (41) 

e(t) = e + w(I)t, w(I) (f'r?) 

and then to evaluate 

(43) 

? v-cos e cos(e-w(I)t). (1!4) 

v2 
= 2 cos((u(I)t). (45) 

So, in the case of regular motion we can anticipate that the correlation 

function (or direct diffusion tensor) 

- 13 -· 



will exhibit pure oscillatory behavior. This is a reflection of the 

regularity of the systems motion - namely the motion in quasi-periodic 

and 11 Smooth." Orbits \AJhich are nearby at some time separate slmvly from 

each other and do not lose information rapidly about having been close. 

Next we turn to the other extreme; name·ly, we consider a system 

8 which is mix . The definition of such systems is in terms of 
~-~~-<-

correlation functions of two bounded phase functions f(f) and g(f) 

defined on phase space r. The boundedness of such functions is a 

mathematical requirement of no distinct physical importance, but since 

we will soon consider unbounded functions it is useful to be clear that 

proofs of mixing entail bounded, or more precisely square integrable 

functions on phase space. The correlation function of f and g is given 

by 

(4()) 

v1here r is 2N dimensional phase space and 0 is cJefinecl as an integral 

over the energy shell: 

<f(r)> ::c JcJrc;(E-H(r))f(f)/ Jdro(E-H(r)) . ( 4 7) 



The system is said to be mixing, if for all bounded f and g, 

cf (t) ?() 

g Jt J>oo 
{ 48) 

{The need for choosing square integrable phase space functions is seen 

in (46), since we must look at Cff(t) in determining whether a system 

is mixing. Cff(O) involves< jf(r)J 2
> and this must be finite.} 

Mixing systems are certainly irregular in the usual sense of the idea. 

To get an idea how fast such correlation functions decay to zero 

for ltl ~ oo we argue in the following heuristic manner. Introduce, in 

a formal fashion, the eigenfunctions WA(r) and eigenvalues A. of the 

Liouville operator 

the A. are pure imaginary since L is anti-hermitean. Choose f and g 

so (f)~ (g)~ 0. and expand f(f) and g(f) as 

and 

f(r) =I fA wA(r), 
A 

g(r) -· IgAwA(r). 
A. 

(49) 

(50) 

(51) 



cfg(t) is now given by 

( 5?.) 

This sum, or integral along the imaginary axis, is governed for large t 

by the singularities in the complex ~-plane of the quantity 

The singularity whith the smallest real part will give the dominant 

behavior for large t. For sys terns shovring regular tnotion cf (t) ';lill g 

not decay for large t but show multiple periodicity. So for such 

regular systems f*~9~ nrust have all of its singularity structure on 

the imaginary axis. When the motion becomes irregular, these 

singularities vJill move off into the ~-plane and lie at some position 

\ = a ± io. Suppose the dominant singularity is a pole at this point, 

then 

cf (t) - e-otcos(ot + ¢); 0 > o, t > 0 
g t + +oo 

(53) 

1-vhere ¢ is a phase ref)ecting the residue at the pole. For t ~ ·- 00 the 

/..-plane must contain a "conjugate 11 pole at~ -· ,-c' ± iQ ' so Cfg ~ o 

in that linrit too. f~ixing systems thus may be c·xpected to exhibit 

exponential decay for correlation functions. This seems rather natural 

actually, since such systems also have the property that nearby points 
Q 

in phase space cliver~Je exponentilly from each other at later times.' 

rrt It is tempting to guess that the rate of divergence is E' •::ith the 



:;ame o as in (53). In some very simple examples that is incleeci the 

1, 10 
case. 

l·J e as s u me cl a pol (; i n the A-p 1 an e i n o rc1 e r t o a r r i w at ( 53 ) • ;; 

branch po·int at A ""o + irt \•JOuld yield aclc!itional pm·;ers of tirne 

multiplied by (53). 

Our actual problem in the case of the correlation function 
-j.-

1':. ~ (I,t) involves an averaging process over part of phase space only, 
a1) 

namely the angle variables. Let us look at cf
9

(t) ahove with 

{f) "" (g) "' 0 and choose for f the unbounded function 

~- + + + N + +) 
F(I,e) - n(J ,e)8 (I-J ( 511) 

v1hi le g is left unspecified except for< g > 

= J dNe + + -Lt ·+ + cf (t) (l(J ,e)e g(J ,e) 
g ( 2n) 

L 

+ 
Clearly Cf (t) no~ c!epends on J as well as time. The use of the 

g 

unbounded function f takes us out of the usual realm of mixing and le s 

us to the guasi-mixing hypoJ.b.e.sj_s_: angle averaged functions like 

- 17 -



{ J
N c e 

) (21r) 

-+ -+ -+ ·+ 
aH(I,e) -Lt aH(I,e) 
~e aeb 

behave as 

> o, (55) 

when the system motion is irregular. This is a stronger requirement 
-+ 

than mixing alone and requires mixing to be local in I space and to 

result from the averaging over only some of the chaot·ically varyin() 

phase space co-ordinates. 
-+ 

On the basis of this hypothesis I propose to approximate Aab(I,t) 

for regions of irregular motion by 

(56) 

-+ 
for all times t > 0. Here v(I,t) must satisfy 

-+ 
v(I,t) (57) 

t ~co 

and 
-+ 

v(I,O) = o (58) 

~- 18 -



-+ 
Many choices for v(I,t) clearly satisfy these requirements, but an 

-+ 

n (I) t + ~(f) ( 1 ~e -·n (I ) t) . -+ 
especially simple one is v(I,t) Another 

-+ 
choice for parametrizing 4ab(I,t) indeed one we will use below is 

·+ 
-+ -o(I)t -+ -+ -+ 

"'ab(I,O)e cos(n(I)t + (l)(I))/cos Q)(I), 

which clearly supposes Q) ~ (2n+l)n/2 n = 0, 

None of these specific parametrizations has a fundamental 

-st significance; each expresses the asymptotic behavior e cos(nt Q)) 

suggested before. 

All of these statements refer to t > 0. Fort~ 0, we expect the 

't correlation functions to behave as e0 cos(n't + t/J'), <r' > 0. If the 

correlation functions involved integrals over all of phase space rather 

than just over angular variables, we could demonstrate a connection 

between the t > 0 and t < 0 behavior of the correlation function using 

the anti-hermitiean property of L, Here we do not integrate over action 

variables and have found no general relation between positive t and 
_,. 

negative t behavior of"' b(I,t). at 

Evidence for this behavior of the direct correlation function comes 

from several sources. First there is the work by Mo 11 on the onset of 

stochasticity in Hamiltonian systems. Mo examined the pole positions of 

the Laplace transform of correlation functions for three Hamiltonians 

including the well-known Henon-Heiles example. At the parameter values 

associated with the onset of chaotic behavior in the su ace of section 

plot, the pole positions moved into the complex plane in such a way as 

to produce behavior like (56). 



Secondly, we present some calculations done on correlation functions 

in the standard mapping of Chirikov. 1 
This is an area preserving 

mapping which takes vari ab 1 es In, en each lying between 0 and 1 into 

In+l' en+l in the same interval: 

I I + k . 27f8 (60) .~ ·~s1n n n 27f n 

(mod 1) 

en+1 .. en + I n+l ( 61) 

The mapping can be derived from a physical system which is a pendulum 

subject to delta function kicks at unit intervals. 

th the va·lues of momentum and angle after the n kick. 

We have evaluated the correlation function 

C(N,I ) 
0 

I and e are n n 

(62) 

for various values of 1
0 

for 0 < N < 10 for values of the mapping 

parameter k which are known to give significant regions of stochastic 

behavior. Irregular motion in the standard mapping sets in for 

k = 11•3•12 and exhibits itself by the filling of large portions of 

the I,e plane by a single trajectory. 

As an example t'le show in Figure 1 the trajectory In.~\ for n"' 
4 0,1,2, •.. ,10 for the standard mapping with k = 3.5 and I = 0.4357 

0 

and e
0 

= 0.078695. These initial values were essentially arbitrary 



except that previous experience with the mapping indicated that they lay 

outside the large islands seen in Figure 1. Excluding the large islands 

we would expect 28.25 points/square in Figure 1 if the 104 points are 

uniformly distributed. A survey of the squares reveals a mean number of 

26.1 points with { (N~<N>) 2 >!<N>2 ~ 0.038 which is very close to 
-1 

(N) = 0.027. This seems to indicate that a uniform distribution with 

normal fluctuations is what we are seeing in Figure 2. 

We calculated C(N,I ) for I = 0.4357 and k = 3.5 and this is 
0 0 

shown in Figure 2 for 0 < N < 10. All e
0 

integrated over here lie in 

the apparently chaotic region. The points can be fit rather well by 

(63) 

with a= 0.25, Q ~ 1.578, and ¢ = ~0.44. The comparison between (63) 

and C(N,I ) is given in Figure 3. In Figure 4 the same correlation 
0 

function at k ~ 3.5 is shown for I
0 

= 0.4, 0.5, and 0.55 to give an 

indication of the sensitivity of 1
0

• The variation of C(N,I
0

) with 

respect to k for fixed I
0 

is shown in Figure 5 fOl~ I = 0.5 and k = 
0 

3.5~ 4.0. 4.5. and 5.0. In Figure 6 we show C(N,I
0

) for two closely 

spaced values of k, k 5.00 and k "" 5. 03, for I "" OG50 
0 

There is a sublty in making these calculations. Since the function 

eN(I
0

,e
0

) becomes very rapidly varying, many integration points 

are needed in the calculation of C(N.I
0

). For the range of N shown 

and the value of k chosen, we found that for~ 2000 integration points 

we reproduced the same C(N,I
0

) while for much fewer, the computed 

values differed as they "settled" into the answer shown. Clearly one 



must get to the stage where there are at least several integration 

points between each wiggle of the integrand. As k increases the 

integrand becomes more and more wiggly, we expect it to be increasingly 

difficult to numerically evaluate C(N,I
0

). Indeed at k = 5, some 7000 

integration points were needed to get a stable answer over the same 
,. 3 

range of N. The behavior observed by Smith1 that the r.m.s. value of 

C(N I ) d ( . t t' . t )~ 112 . . t t 'th • 
0 

ecreases as 1n egra 1on po1n s 1s cons1s en w1 

this view of the way errors will disappear as we settle in on the 

reproducible answer since we are slowly getting between the rapid 

variations. 

A further complication is connected with the growth of errors in any 

calculation with the standard mapping for sizeable k and a large number 

of steps. Errors grow according to the tangent mapping 

= ~I + (k cos 2ne )~e 
n n n 

(64) 

( 65) 

and for sizeable k should behave as IJ.9 ~ k,n,A,e , td ~ knl'II
0

. 
n n n 

This behavior has been verified by Chirikov1 and discussed 

hy 1. 
') . 

.( 

For 1 a r q c en o u q h k , the r.' r' r or s 0 r o' .' so l ,') r c 1; , r:' v e. n for a .nee 

small number of steps, that any numerical calculation of eN(I
0

,e
0

) 

C(N,I
0

) must be examined very carefully. 

22 



Now we turn to the equation which determines the projected diffusion 
+ 

tensor D t (I , s) aJ 

S<S ac 

+ 
Our replacement of the operator form of "'ab(I ,s), Equation (?3), by 

the of Equation (56) which is an ordinary function, not an 
+ 

operator, means that this equation forD b(I,s) is no longer an a 

operator equation. 

We know that for s + oo, 

+ + 

( 37) 

0 ab (I , s) + 6 ab (I , s) ( 66) 

and have discussed that above. (See before Equation (38)). For s + 0, 

assuming ll~~(Ls) is not singular, 14 

/ + 
I I D1 (I,s = 0) a a a b JC 

0, 

+ + 

So 0 t (I ,s = o) is a polynomial in I of first orclrr. The general a l 

solution to (67) is 

A b + I B~ + I1 C , a a 1l 1 a 

- 23 ~ 

( 67) 

(68) 



'"'ith /~ b' 81 , and C f'ixed tensors of the indicated rank which are a ,) a 
-t-

independent of I. 
-t-

~~e can acqu·ire some handle on the behavior of Dah(I,s) from the 
-t- + 

properties of 6 1 (I,s). 
a.J Suppose first that, in some sense, 6 b(I,s) 

a 
~1 

is large and t,. 1 D is small compared to l. aJ ac Then the second 

term on the left hand side of (37) can be dropped with respect to s6 • 
ac 

ancl 

(o9) 

The solution to this is 

(70) 

where A b" Bb' and C have the same meaning as before, and N is a a 
-t-

the dimension of I space. 
+ + 

Secondly, if llab(I,s) is independent of I, then an acceptable and 

consistent solution for D is 

( 71) 

-t-

Thirdly, if t,.ab(I,s) is only \r.Jeakly dependent on I, then \lie write (as 

in Equation (39)) 



cmd use (40) to solve for· n
1
h' the anomalous clHfusion tensor, in <'1 

perturhative fashion. 

+ 
Fina'lly, suppose 11 b(I,s) becomes small. a, 

. -1 + 
S 111c e (b. ) a h (I , s ) 

v!i.ll become larqe, l,•:e havr. 0gain D 
1 

== 11 b except nears= 0. a) a. 

It seems clear that whenever neither D nor 11 have rapirl variation in 
+ 

that D ~ ~!J. 
1 

and the singularities of 0 in the s plane v1ill he 
a~) a) 

slightly displaced from those of~-

We can introduce the eigenfunctions ~~A)(f) and eigenvalues 

A(s) of the operator 

and then vJrit~; 

+ 
D 1(I,s) 
J) 

( 7?_) 

( 7 3) 

From this it is clear that the zeroes of A(s) are what determine the 

singularity structure in the s-plane for Dab(l,s). A(s) rnay he taken 

from the variational principle 

- 25 -



(74) 

Varying A[x,~] 1vith respect to xa or <Pb yields 

(75) 

(76) 

ivhere 

- ;:/ T 
Oc,l·.l ~ - + s( ll ) ~ ai ai 1·~ c .) cb 

( 77) 

and T means transpose. In our ansatz, (56), llah is symmetric so if 

the variations of A with respect to x and ~ are set to zero, we have 

that A is the eigenvalue of Oab we seek. 

Henceforth in this paper, we will assume llab is almost independent 

Small corrections lie inn b" a 
+ 

Now we turn our attention back to the evolution equation for F(I,t), 

Equation (20), the angle averaged phase space distribution function. We 

must first consider the correlation function 

->- =- (aHl ~(1-P)Lt + + ) yk (I, t) - P ~ e G (I, e, t==o) . 
aek 

( 78) 
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One can derive a connection between this projected correlation function 
-+-+ 

of initial information 1 G(I,e 1 t=0), and the perturbation Hamiltonian H1 

and the direct correlation 

Using the methods of Section II we find 

so the eigenvalues of Oab" Equation (72), play a key role here as 

well, since in terms of w(x)(I) we have 
a 

27 -

(79) 

( 80) 

(81) 



The behavior of hath D, andY, is thus governed hy the zeroes 
ao J 

of A. ( s) , Let us take them to be simple zeroes at s = s = 
0 

Then each of D b and yb behave as (exp - o t) 
a, o 

cos(Q t + ~ ) which is similar to the behavior of 6ab' a and 
0 0 0 

n we can find directly from A(s) or the variational principle for 
0 

it. For r/J we need some knovvledge of the residue at the pole in s at 
0 

s ' 
0 

Our equation for F(!,t) reads in the present notation 

t 

~t F(I,t) =~Ikyk (I,t) +h-I Dab({,-r)~(l,t-T). (82) 
ao b 

Our suppositions to this point have led us to the same exponential decay 

in time for each of yk and 0 b. The decay has a time scale a 
For t -1 the first term in (82) is exponentially cr >> a I 

0 0 

negligible. In the second term only T< a t 'h t t h 
~ o con r1 u es .o t e 

integral,and we may P.xtend the integration toT ~oovJith exponentially 

small error. We now arrive at 

(83) 

+ 
which is our desired diffusion equation for F(I,t). The non-linear 

+ 
dynamics lies in Dab(I,t) for which we have been making the ansatz 

0) ' (84) 
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noting (85) 

-+-+ 
To this stage we have said nothing about the size of H1 (I,e)-the 

.L 

non-integrable piece of the underlying Hamiltonian. If, on the scale of 

H, 11 1 is large, vn: rnust use the fun Equation (83) to determine 
0 -

-+ 
F ( I, t). 

If H,, is small, then D, is O(H 1
2) and from (83) v1e see ao . 

·is O(Hf). Uncler the integral in (83) v1e may 'tlrHe 

and, since H1 is small, so is 

+ aF + 
F ( I • t ) - T -d t'( I 't ) + ' " 

1 aF 1 1 ;- at F « · 
0 

+ 

aF 
at 

(8G) 

( 87) 

This allows us to drop the T dependence of F(I,t-T) in (83) and arrive 

Vlith 

-+ 
LF(I,t) 8t 

+ 
D I (I) 

(1) 

(gs) 

(89) 

I·Jhich is the forrn of diffusion r~quation encountered in the qunsi-liW'cl" 

. t. !] approx Hna 1on. 



We call (83) the evolut-ion equation for linear diffu ion. The 
..... 

equation is of course linear in F(I,t), but through D it incorporates 
-+- ..... 

the non-linear·ity of the inderlying dynamical problem governed b_y H(I,e). 
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V, Conclusions 

In this paper 1·1e have studied the evolution equation for the angle 

averagr.cl phase space density 

->-
F(I,t) 

++ 
V.'here f(I,e,t)- th,:; rlensity in action-angle space- satisfir.s the usunl 

+ 
Liouville equation. F(I,t) satisfies an exact equation, Equation (20), 

I • h d • j • t' • t • t t I • f z • 6 
vn1c 'tiE' enve( us1ng ne proJeC 10n opera or ·ecnmque o vJanzlg. 

By studying the connect ion hetv1een the rliffus ion tensor Dab entering 

+ 
the evolution equation for F(I,t) and the direct diffusion tensor 

+ 
t, l(I,t) (Equations (23) and (37)) \liE' argued that for times large 

a) 

compared to the exponential decay of conAelation functions of tt,e 

general forrn 

J
dNe + + -Lt + + 

- --T: A(I,e)e B(I,e) 
( 2'IT) t'l 

+ 
the equation of evolution for F(I,t) becomes the usual diffusion 

equation to exponential accuracy with the diffusion tensor qovernPd by 

angle projected dynamics, seP Equations (21) and (22). 
,+ 

The exponential fall off in time of cA8li,t) which we tested 

numel"·ically ·in the so--called standard mapping of Chirikov 1• 3 'l'le called 
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·+ 
CI\B(I,t) 

<0· 

= e-a0~}_tcos~-L~lLc p(I, t 
COS ¢(1) Au 

0), 

+ + 
This quasi-mixing can only be true in the regions of I, e space where 

irregular or chaotic motion is occurring. Outside those regions we 

generally anticipate a= 0 and the correlation functions will show 

oscillations characteristic of regular motion. 

Although we did not explore any applications of our diffusion 

formalism we. have tv,IO in mind which vv"ill he pursued in future articles: 

(1) the diffusion av;ay from adiabatically constant values of the 

adiabatic invariants of a particle in a ~agnetically confined plasma 

when one tries to heat the plasma with electrostatic waves. 13 The 

formulation of this problem by Smith and Kaufman 15 is precisely 

adapted to the techniques presented here. (2) The braiding or 

destruction of magnetic field lines 5 in the presence of small 

perturbations is also amenable to the analysis given here. With various 

physical mechanisms in mind for the perturbations of the lines, •.•le can 
+ 

proceed to use our evolution equation for F(I,t) to estimate the 

transport of energy from the confining regions. 

A last point: 1ve have talked in this paper about the behavior of 
+ 

F(I,t) for times long compared to the decay time of angle averaged 

correlation functions and only ·in the region of chaot·ic motion, Since 
+ 

the evolution equation for F(I,t) is exact, our ansatz for CA8(T,t) 
+ + 

may prove useful fo1A an I and t recalling cr(I) = 0 in domains of 

regular motion. 
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Figure 1. 

Figure 2. 

Figure 3. 

Figure 5. 

Figure 6. 

Fi tions 

104 points along one trajectory for the standard mapping, 

Equations (60) and (61) of the text, for k ~ 3.5. The 

initial point was I = 0.4357, e = 0.0798695. 
0 0 1 

The correlation function C(N,I ) = 2 J de S'in 2neN(I ,e) 
0 0 0 0 0 

sin 2ne
0 

for the standard mapping with k = 3.5. 1
0 

= 

0.4357. 2000 integration points were used. The use of 

more integration points reproduces the values shown. 

Comparison between C(N,I
0

) in Figure 2 and 

-Ncr ( e cos Nrl +¢)/cos t/J. 

C(N,I ) fork= 3.5 and I
0 

= 0.4, 0.5, and 0.55, 2000 
0 

integration points were used in each case. 

C(N,I ) for I = 0.5 and k = 3.5, 4.0, 4.5, and 5.0, 
0 0 

7000 integration points were used in each case. 

C(N,I ) for I = 0.5 and k = 5.00 and k = 5.03. 7000 
0 0 

integration points were used in each case. 
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